On Discrete Conformal Seamless Similarity Maps
نویسندگان
چکیده
An algorithm for the computation of global discrete conformal parametrizations with prescribed global holonomy signatures for triangle meshes was recently described in [Campen and Zorin 2017]. In this paper we provide a detailed analysis of convergence and correctness of this algorithm. We generalize and extend ideas of [Springborn et al. 2008] to show a connection of the algorithm to Newton’s algorithm applied to solving the system of constraints on angles in the parametric domain, and demonstrate that this system can be obtained as a gradient of a convex energy.
منابع مشابه
Cortical Surface Flattening: a Discrete Conformal Approach Using Circle Packings
The locations and patterns of functional brain activity in humans are difficult to compare across subjects because of individual differences in cortical folding and the fact that functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings ...
متن کاملA “regular” Pentagonal Tiling of the Plane
The paper introduces conformal tilings, wherein tiles have specified conformal shapes. The principal example involves conformally regular pentagons which tile the plane in a pattern generated by a subdivision rule. Combinatorial symmetries imply rigid conformal symmetries, which in turn illustrate a new type of tiling self-similarity. In parallel with the conformal tilings, the paper develops d...
متن کاملStability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملComputation of Quasi-Conformal Surface Maps Using Discrete Beltrami Flow
The manipulation of surface homeomorphisms is an important aspect in 3D modeling and surface processing. Every homeomorphic surface map can be considered as a quasiconformal map, with its local non-conformal distortion given by its Beltrami differential. As a generalization of conformal maps, quasiconformal maps are of great interest in mathematical study and real applications. Efficient and ac...
متن کاملCortical Surface Flattening: a Quasi-conformal Approach Using Circle Packings
Comparing the location and size of functional brain activity across subjects is difficult due to individual differences in folding patterns and functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings of the cortex assist in simplifying...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.02422 شماره
صفحات -
تاریخ انتشار 2017